PLASMOSE - antimicrobial effects of modular atmospheric plasma sources
نویسندگان
چکیده
The technological potential of non-thermal plasmas for the antimicrobial treatment of heat sensitive materials is well known and has been documented in a great number of research activities, but the realisation of industrial plasma-based decontamination processes remains a great challenge. One of the reasons for this situation is the fact that an antimicrobial treatment process needs to consider all properties of the product to be treated as well as the requirements of the complete procedure, e.g. a reprocessing of a medical instrument. The aim of the BMBF-funded network project PLASMOSE is to demonstrate the applicability of plasma-based processes for the antimicrobial treatment on selected, heat sensitive products. Modular and selective plasma sources, driven at atmospheric pressure are used. This basic approach shall combine the technological advantages of atmospheric pressure plasmas (avoidance of vacuum devices and batch processing) with the flexibility and handling properties of modular devices. TWO DIFFERENT OBJECTIVES WERE SELECTED: the outer surface treatment of medical products and the treatment of hollow packaging for pharmaceutical products. The outer surface treatment of medical products, in particular catheters for intracardial electrophysiological studies, is investigated by means of RF-driven plasma jets in argon. Due to its compact design they are predestined for modularisation and can be adapted to nearly any complex 3-dimensional structure as given by the medical products. The realisation of an antimicrobial treatment process of hollow packaging for pharmaceutical products has quite different demands. Such a process is needed to be implemented in in-line filling procedures and to work without additional process gases. The idea is to use an atmospheric air, microwave-driven self propagating discharge. The plasma process is optimized for the decontamination of 200 ml bottles by field simulation studies combined with optical emissions spectroscopy and micro-biological tests.
منابع مشابه
The effects of copper nanoparticles and cold atmospheric plasma on biochemical indices of Dracocephalum moldavica
The Moldavian dragonhead (Dracocephalum moldavica L., Lamiaceae) is an annual medicinal plant with beneficial nutritional sources that plays important roles in human and animal feed. Nanoparticles and cold atmospheric plasma increase biochemical compounds in plants. In this study, the effects of copper nanoparticles and cold atmospheric plasma on biochemical indices of the medicinal plant Draco...
متن کاملBioactivity Determination of Recombinant lysostaphin Immobilized on Glass Surfaces Modified by Cold Atmospheric Plasma on Staphylococcus aureus
Introduction: Staphylococcus aureus is a source of nosocomial infections and one of the significant concerns in patients with indwelling devices. Lysostaphin is a bacterially produced endopeptidase with a unique activity on S. aureus. Plasma, the fourth state of the material, consists of charged ions, free electrons, and activated neutral species. Biomedical applications of cold plasma are rapi...
متن کاملEffects of cold atmospheric plasma on viability of breast (MDA-MB-231) and cervical (Hela) cancer cells
Introduction: There are many reports published about the use of cold atmospheric plasma in cancer treatment recently. In this way, the selective effects of cold plasma on the breast (MDA-MB-231) and cervical (Hela) cancer cells were studied as a new cancer treatment method. Materials and Methods: In this study, cold atmospheric pressure plasma was generated using a plasma jet reactor and also o...
متن کاملEffects of non-thermal atmospheric plasma on physiological characteristics of black cumin plant
The objective of current study was to determine the effects of non-thermal atmospheric plasma (NTAP) on physiological features of Black Cumin seeds. Black Cumin seeds were divided into 4 groups: one control group and three experimental groups. The experimental groups were exposed to NTAP for 5, 10 and 20 minutes, respectively. Then the seeds of the experimental and control groups grew for 21 da...
متن کاملDesign and implementation of high voltage square wave power source with variable DC-offset and study its effect on atmospheric-pressure plasma
Nowadays high-voltage power sources is used in different areas such as generation of atmospheric-pressure plasma. Different voltage waveforms affect the plasma generation and its quality. In this paper a new high voltage square wave with DC-offset power source is presented to study the different parameters on plasma generation and propagation. The proposed converter which is based on power semi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2008